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Abstract

Full-waveform inversion (FWI) is a powerful method
and it has been used successfully to invert subsurface
parameters. It consists basically on the minimization
of the difference between the predicted and observed
data. However, its application using finite-difference
schemes is limited to low frequency content and the
increase of the range of higher frequency will demand
a high computational cost of the wavefield propagation
procedure and also the whole inversion scheme. To
overcome this problem, we apply the rapid expansion
method (REM) for numerical wavefield extrapolation
inside the FWI workflow thus increasing the frequency
content of the inversion process. Besides that, an
efficient preconditioning method for computing the
gradient vector in order to increase its resolution has
also been proposed.
To test the efficiency of our proposed FWI approach,
we apply it using a frequency multiscale scheme for a
synthetic data set with a complex velocity model. The
inversion results show satisfactory inverted velocity
models which can be used to produce depth imaging
of high quality. Thus we demonstrate the effectiveness
and applicability of our FWI scheme using REM
combined with a multiscale approach .

Introduction

The Full-waveform inversion has been used more
frequently due to ability to estimate model parameters
with higher resolution when compared with the traditional
methods. Consequently, it can be apply to solve
complex depth imaging problem and thus produce accurate
subsurface images. FWI is used traditionally for acoustic
case in order to estimate the velocity field. The best
inverted velocity model is the one that can predict the
observed data, using the complete wave equation, and
it will be match the actual observed data in terms of
traveltimes, phase and amplitude.

The efficient solution of the direct problem is of great
relevance in FWI, because the difference between
observed and estimated data has to contain only
information about the model. That is, the modeling
procedure can not produce events that do not exist in
the observed data. This procedure is performed with

the extrapolation of the wave field in a physical model
through a direct modeling operator. This operator should
be implemented to include elastic modulus and density
(Virieux and Operto, 2009), but it is in the current moment
still computational expensive. Thus, propagation of the
wave can be understood by considering a purely acoustic
medium in which no transverse waves are propagated.

Theory

We consider the following acoustic wave equation, which
predicts only the propagation of longitudinal waves:

∂ 2u(x, t)
∂ t2 +L2u(x, t) = f (x, t) (1)

where −L2 = c2(x)∇2, c(x) is the velocity of propagation,
x = (x,y,z) is the position vector and ∇2 =

(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)
is the Laplacian operator in cartesian coordinates and
f (x, t) is the source term.

The approach that we use to solve equation 1 is called
variations of parameters (VOP). Thus, the general solution
of u(x, t) to equation (1) on [0, t] is written as:

u(x, t) = u0 cos(Lt)+
u̇0

L
sin(Lt)+

1
L

∫ t

0
f (x,s)sin[L(t− s)]ds

(2)
where u(x, t = 0) = u0 and ∂u(x,t)

∂ t |t=0= u̇0.

Equation (2) is the fundamental equation from which we
derive the integration procedure. Now, if equation 2 is
reevaluated using the intervals [t, t +∆t], [t, t −∆t] and by
adding them and evaluating the resulting integral, we obtain
the following complete solution of 1, which includes the
source term and is given by:

u(x, t +∆t)+u(x, t−∆t) = 2cos(L∆t)u(x, t)+S(x, t±∆t) (3)

where S(x, t±∆t) = ∆t2

2 [ f (x, t +∆t)+ f (x, t−∆t)].

Rapid Expansion Method

The rapid expansion method is an efficient way of
numerically solving the acoustic wave equation (Pestana
et al., 2009). This technique can extrapolate the wave field
with higher frequencies and larger sampling intervals in
time and space, thus being more stable and less dispersive
than the conventional finite difference scheme.

Following Kosloff et al. (1989) and based on the expansion
method presented by Tal-Ezer et al. (1987) the cosine
function can be expanded as

cos(L∆t) =
∞

∑
k=0

C2kJ2k(∆tR)Q2k

(
iL
R

)
, (4)
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where C2k = 1 for k = 0 and C2k = 2 for k > 0, J2k represents
the Bessel function of order 2k and Q2k(w) are the modified
Chebyshev polynomials. The term R is a scalar larger than
the range of eigenvalues of −L2 and it is the same R which
appeared in the original Tal-Ezer method (Tal-Ezer et al.,
1987).

Since (4) contains only even polynomials, it is more
convenient to use the relation,

Qk+2(w) = 2(1+2w2)Qk(w)−Qk−2(w). (5)

The recursion is initiated by

Q0(w) = 1 and Q2(w) = 1+2w2, (6)

where we have replaced w by iL/R.

For 2D wave propagation, and considering the constant
velocity case, R is given by R = πc

√
(1/∆x2)+(1/∆z2). In

general c should be replaced by cmax, the highest velocity
in the grid, and ∆x, ∆y and ∆z are the spatial grid spacing
(Tal-Ezer et al., 1987).

The sum in (4) is known to converge exponentially for k >
∆tR and the summation can be safely truncated with a k
value slightly greater than ∆tR.

In this way, the stability of the REM is ensured, since
the number of terms used in the expansion is directly
proportional to the used time sampling interval. Thus,
any ∆t can be used, provided that the number of terms
calculated will be sufficient to guarantee the convergence
and the stability of the method. Therefore, the use of REM
makes the FWI process with wave propagation more stable
and free of numerical dispersion when high frequency
components are inserted in the modeling of these wave
fields (dos Santos and Pestana, 2015).

Time-domain multiscale full-waveform inversion

The application of the multiscale scheme is very crucial
for the FWI method specially because it can prevent the
inversion method converges to a local minimum. Here,
in our case, we have used during the inversion procedure
higher frequency data and this allows us to obtain inverted
models with more details.

The full-waveform inversion method consists of iteratively
improving an initial velocity model (m). This optimization
is based on the modeling of seismic waves through the
solution of the direct problem, which offers the possibility to
compute simultaneously the amplitude and the traveltimes
of the waves. The solution of the inverse problem involves
minimizing the objective function in the space of the
model parameters to measure the difference between the
predicted (dcal) and observed data (dobs) (Virieux and
Operto, 2009). The inversion of the directly observed data
is computationally impractical. Thus, FWI is formulated as
a least squares type optimization problem, in which the
objective function of norm l2 representing the problem can
be defined by:

F(m) =
1
2
||d(m)cal −dobs||22 =

1
2 ∑

ns

∫ T

0
(dcal −dobs)dt, (7)

where F is a measure of error, T is the maximum record
time. The summation is done in the shot domain, where

ns is the total number of shots. The purpose of this
formulation is to find the model m so that the functional
F(m) is minimum.

This minimization is done in a recurrent way, that is, given a
current model mk, we search for a next model mk+1, which
theoretically should be closer to the true model.

The iterative process can be deduced using the second
order Taylor-Lagrange approximation (Virieux and Operto,
2009). Assuming that m can be written as the sum of an
initial model m0 and a perturbation in the model ∆m, we
have:

F(m) = F(m0 +∆m) = F(m0)+∑
M
j=1

∂F(m0)
∂m j

∆m j (8)

+ 1
2 ∑

M
j=1 ∑

M
k=1

∂F2(m0)
∂m j∂mk

∆m j∆mk +Ω(m3). (9)

By truncating the Taylor-Lagrange expansion in the first
order and deriving from the model parameter ml , we have:

∂F(m)

∂ml
=

∂F(m0)

∂ml
+

M

∑
j=1

∂F2(m0)

∂m j∂ml
∆m j (10)

The minimum of the objective function around m0 occurs
when its first derivative is zero. In this way, it is possible to
obtain the perturbation of the model ∆m.

∆m =−
[

∂F2(m0)

∂m2

]−1 [
∂F(m0)

∂m

]
=−H−1

∇F, (11)

∇F is the gradient vector of the objective function at point
m0, defined as:

∇F =

[
∂F(m0)

∂m

]
=

[
∂F(m0)

∂m1
,

∂F(m0)

∂m2
, ...,

∂F(m0)

∂mM

]T
.

(12)
The second derivatives of the objective function
correspond to the Hessian matrix and define the curvature
of F in m0 and is defined as:

H =
∂ 2F(m0)

∂m2 =
∂ 2F(m0)

∂m jml
. (13)

The calculation of ∆m in the equation (11) would lead to
the minimum value in a single (Newton’s method if F(m) is
quadratic and the term Ω(m3) in 9 is neglected. However,
FWI is a strongly non-linear inversion, and it is necessary to
solve the problem recurrently (Virieux and Operto, 2009).

mk+1 = mk−H−1
k ∇Fk. (14)

Therefore, the solution of the inverse problem is obtained
in an iterative way, where in each iteration the parameters
of the model obtained in the previous iteration are updated.
The velocity model is updated by following the direction of
the gradient vector in order to reach the minimum value of
the objective function and obtain the inverted model mk+1
that best approximates the true model.

Preconditioning with source illumination - receiver
applied to the gradient

A good alternative to perform the gradient computation
is to make use of the adjoint method. This method can
calculate the objective function gradient without requiring
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the explicit numerical calculation of the partial derivatives
of F(m) relative to the parameters of the model (Plessix,
2006). The gradient can be then calculated in time domain
(Bunks et al., 1995) using the following formulation:

∇F =
1
c3 ∑

ns

tmax

∑
t=0

üsur, (15)

where ns is the total number of shots. üs corresponds to the
second time derivative and can be obtained from:

üs =
∂ 2u
∂ t2 =

un+1−2un +un−1

∆t2 , (16)

where, un+1, un and un−1 are the future, present and past
wavefields, respectively.

By using the following relation

un+1 +un−1 = 2cos(L∆t)un, (17)

where cos(L∆t) is given by equation (4), equation (16) can
be expressed as Thus,

üs =
2un [

∑
∞
k=0 C2kJ2k(∆tR)Q2k

( iL
R
)
−1
]

∆t2 (18)

Additionally, we need to compute ur which is the field
resulting from the reverse propagation of the residue
(dcalc − dobs) in the current velocity model. The residue
wavefield, ur, is called the adjoint state variable and it can
be computed by the following equation:

1
c(x)2

∂ 2ur(x, t)
∂ t2 = ∇

2ur(x, t)+(dcalc−dobs). (19)

The source term, which is propagated to generate these
wavefields, depends on the formulation of the objective
function that is minimized in the FWI procedure. That is,
the adjoint source is the derivative of the objective function
with respect to the modeled wavefield

(
∂F(m)

us

)
.

In order to improve the computation of the gradient and
suppress the noises, Kaelin et al. (2007) proposed to divide
equation (15) by the illumination of the source and the
receivers and they can be expressed as:

∇Fs =
1
c3

∑ns ∑
tmax
t=0 üsur

∑ns ∑t ü2
s

, (20)

and

∇Fr =
1
c3

∑ns ∑
tmax
t=0 üsur

∑ns ∑t u2
r

, (21)

Equation (20) is intended to highlight the shallower
reflectors and (21) tries to highlight the deepest reflectors.

Thus, by combining the two previous imaging conditions
(20) and (21), we can obtain equal illumination for all
reflectors:

∇Fsr = ∇Fs +∇Fr. (22)

In the FWI procedure, equation (22) proved to be
very efficient, improving the amplitude values of the
conventional gradient (equation 15) and consequently
increasing the resolution of the inverted velocity models.

Results and Conclusions

In the FWI procedure, the observed data was generated
using the REM with the true velocity field of the model
Marmousi (Figure 1). The input velocity field (Figure 2)
that initiated the inversion is a smoothed version of the
original model. The observed data was filtered for each
frequency band and the calculated data was modeled with
these corresponding frequencies using the updated fields
and then compared with the observed data.

The inversion procedure starts by updating the observed
low frequency seismic data in the ranges of 0− 2.5Hz
and 0− 5.0Hz, which will result in the recover of the large
structures of the model as we can notice in Figure 3 and
Figure 4, respectively. Afterwards, taken a fixed number of
iterations, we increased the range of frequency, in range
0− 7.5Hz and 0− 10.0Hz and continue the inversion small
structure start to show up. The results in Figure 5 and
Figure 6, for these intermediate range of frequency, show
that the resolution has increased and the inverted model is
comparable with the true one present in Figure 1. Finally
the process ends with the inversion of the seismic high
frequency data, which inserts the high resolution details on
the inverted final model (Figures 7 and 8).

Considering the previously mentioned results, it was
possible verify that FWI with the rapid expansion method
and the proposed preconditioning method for the gradient
vector led to an overall improvement of the procedure
and has produced velocity models with high resolution.
The application of the multiscale approach is crucial to
avoid local minimums and also to obtain models with more
resolution.

The preconditioning method used here for computing the
gradient vector consists of a light compensation which
can be considered an approximation of the inverse of the
Hessian matrix. The graphs of the objective functions
(Figure 9) and velocity profile (Figure 10) show the
efficiency of the method (Figures: 3-8).
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Figures

Figure 1: True Marmousi model

Figure 2: Initial model of the Marmousi model for inversion
procedure

Figure 3: Estimated model using gradient preconditioning
method for peak frequency of 2.5 Hz.

Figure 4: Estimated model using gradient preconditioning
method for peak frequency of 5 Hz.

Figure 5: Estimated model using gradient preconditioning
method for peak frequency of 7.5 Hz.

Figure 6: Estimated model using gradient preconditioning
method for peak frequency of 10 Hz.

Figure 7: Estimated model using gradient preconditioning
method for peak frequency of 12.5 Hz.
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Figure 8: Estimated model using gradient preconditioning
method for peak frequency of 15 Hz.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Convergence of the objective function using the
gradient preconditioning method for peak frequency of: (a)
2.5 Hz, (b) 5 Hz, (c)7.5 Hz, (d) 10 Hz, (e) 12.5 Hz, (f) 15
Hz.

Figure 10: Profile of the estimated model for the
preconditioning method for the gradient. The profile
corresponds to position x = 1250m
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